
ABSTRACT: The potential of spectroscopy as a reliable and
fast method for determining the deterioration of frying oils was
investigated. Daily oil samples were collected from a commer-
cial Chinese spring roll plant. The plant was operated one shift,
5 d a week, then cleaned and restarted with fresh oil every 4 wk.
Each oil sample was analyzed by 11 chemical/physical methods
and fluorescence, near infrared/visible (NIR/VIS), Fourier trans-
form infrared (FT-IR) and FT-Raman spectroscopic procedures.
The results were evaluated and compared by principal-compo-
nent analysis and partial least squares regression. Most chemi-
cal/physical and all spectroscopic methods detected the deterio-
ration during the first half of the frying cycle. Thereafter, an equi-
librium occurred between deterioration processes and
replenishment with new oil. At equilibrium, the correlation be-
tween frying time and the various methods was nonlinear. FT-IR
with the attenuated total reflectance sampling technique was the
most direct and accurate method of monitoring gross changes in
the frying oil. Fluorescence was the technique that provided the
best models for anisidine value, oligomers, iodine value, and vi-
tamin E. NIR/VIS spectroscopy proved to be a good general-pur-
pose technique. The study demonstrated that spectroscopic sen-
sors have the potential to replace titration and chromatographic
procedures, and can be used in combination with chemometric
data analysis to optimize deep-frying operations.
JAOCS 74, 1495–1508 (1997).
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During deep-fat frying, the oil undergoes a series of complex
chemical reactions, such as oxidation, polymerization, hy-
drolysis, cis/trans isomerization, conjugation, pyrolysis, and
cyclization (1,2). These reactions are known to affect
organoleptic, nutritive, and functional properties of the fried
food and, in the long run, can result in the formation of com-
pounds that have adverse health effects (3,4). Objective ana-
lytical methods are required for accurate quality assessment
of used frying fats/oils. However, it has not yet been possible
to find an easy, reliable, practical analytical solution to pre-
dict when to discard the oil (2,4–6). Difficulty in finding an
objective analytical procedure is due partly to the complexity
of compounds formed in the frying oil and partly to the lack
of generally accepted nutritional and toxicological mini-

mum/maximum values. Further complications arise because
any analytical chemical/physical test used will be affected by
the frying oil quality (the more unsaturated the oil, the greater
the tendency to form polymeric rather than polar degradation
products), the food being fried, and by the replenishment with
new oil necessary to maintain the oil bath (6).

Spectroscopic methods, along with chemometric multi-
variate analysis, are emerging as potential tools for rapid
screening of oil authenticity and quality (7,8), but their capa-
bilities to monitor and detect frying oil deterioration in indus-
trial deep-fat frying operations remain largely unexplored.
Spectroscopic sensors have the advantage that the measure-
ments are rapid and noninvasive and that they can be installed
on-line/at-line. Chemometric data analysis has the advantage
that it is able to deal efficiently with real-world multivariate
data, including highly co-linear spectral data, which are ob-
served rather than manipulated. Development of rapid spec-
troscopic methods to evaluate frying oil deterioration in the
food industries is desirable, not only to assess frying oil qual-
ity but also to gain insight and to monitor the main variables
that influence the frying process, i.e., quality of the frying oil,
the fried food itself, frying temperature, duration of use,
turnover rate, exposure to oxygen, use of antioxidants or an-
tifoams, filtering, handling of the frying equipment, and
maintenance of the frying oil. By using spectroscopic meth-
ods along with chemometric methods, the complete frying
process can be monitored on-line, and changes to improve the
quality and to extend the fry life of the oil can be suggested.

The present investigation aims to evaluate the potential of
different spectroscopic sensors and to demonstrate the advan-
tage of applying multivariate chemometric projection and cal-
ibration tools for monitoring the oil deterioration in a com-
mercial frying operation. For this purpose, daily oil samples
were collected from a commercial spring roll plant, investi-
gated by a large variety of chemical/physical analytical tests,
and subsequently investigated spectroscopically in a variety
of spectral regions by different spectral methods.

EXPERIMENTAL PROCEDURES

Samples. Daily oil samples were collected from a commer-
cial Chinese spring roll plant (Daloon A/S, Nyborg, Den-
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mark), which operated one shift 5 d a week and was cleaned
and started with fresh oil every 4 wk. Sample 1 is from new
oil only heated up in the fryer; sample 2 is from the following
working day and so forth. Sample 20 is from the oil that was
discarded, according to the practice of the company. During
nights and weekends, the oil was stored in a separate tank, al-
lowing the oil to cool to room temperature. The deep-fat fryer
batch volume was 3,000 L, and new oil was continuously
added to compensate for the oil absorbed into the spring rolls
(approximately 5 g per roll). The frying process took place at
temperatures around 180 to 190°C, and each spring roll was
deep-fried for approximately 90 s. The oil, acquired at Århus
Oil Factory A/S (Århus, Denmark), consisted of a typical
blend of fractionated and deodorized rapeseed oil (25%) and
palm oil (75%). The ratio between saturated fatty acids, mo-
nounsaturated fatty acids, and polyunsaturated fatty acids was
29:52:19. About 16% of the polyunsaturated fatty acids was
linolenic acid. The total natural content of vitamin E in the
oil was about 750 µg/g.

Spectroscopic data. To resemble on-line measurements as
closely as possible, all spectroscopic evaluations of the sam-
ples were performed without any pretreatment, such as dilu-
tion or filtering. All spectral measurements were made at
room temperature.

Fluorescence data were collected on a Perkin-Elmer
LS50B spectrometer (Palo Alto, CA). The spectra were ac-
quired by using a quartz cuvette in a 90° arrangement. Com-
plete excitation–emission two-dimensional landscapes were
collected for the first and last oil samples to determine opti-
mal excitation wavelengths. The excitation wavelengths 395,
420, 440, 500, and 530 nm were selected from the landscapes.
Emission spectra were recorded from the excitation wave-
length plus 20 nm, to avoid Rayleigh scattering, and up to 800
nm. In subsequent data treatment, the five emission spectra
were appended and stored as one spectrum (Table 1).

Dispersive near-infrared (NIR/VIS) data (including the
visible region) were collected with an NIRSystems Inc.
(model 6500; NIR Systems Inc., Silver Spring, MD) spec-
trophotometer. The spectrophotometer has a split detector
system with a silicon detector between 400 and 1100 nm and

a lead sulfide detector from 1100 to 2500 nm. The NIR/VIS
transmission spectra were recorded in a 10-mm quartz cell,
and spectral data were converted to absorbance units.

Fourier transform infrared data (FT-IR) were collected
with a Perkin-Elmer System 2000 interferometer. Norton-
Beer medium apodization functions were used to convolute
the Fourier transform. The FT-IR data set was collected be-
tween 6500 and 600 cm−1 with a horizontal ATR (attenuated
total reflectance) sampling station and a pyroelectric deuter-
ated triglycine sulfate detector. Prior to each measurement,
the sampling station was purged with dry air for 1.5 min to
keep water vapor and carbon dioxide concentrations in the
light path constant. For these mid-infrared measurements, the
interferometer was equipped with an optimized KBr beam-
splitter. All spectra were ratioed against a single-beam back-
ground spectrum, recorded with twice the number of spectral
accumulations as used for the sample spectra (Table 1), and
converted to absorbance units.

FT-Raman data were collected with a Perkin-Elmer System
2000 interferometer. The Raman spectra were recorded with
an Nd:YAG laser emitting at 1064 nm with a laser power of
200 mW. The Raman data set was collected with an InGaAs
detector and stored as Raman shifts between 3600 and 0 cm−1.
A 180° scattering arrangement was used, and no correction for
the spectral response of the instrument was applied.

Chemical data. For each of the 20 frying oil samples, 11
different chemical/physical properties were measured
(Table 2). The viscosity (VISC) of the samples was measured
at 25°C with an EMILA rotational viscometer. The contents
of dimeric and polymeric triglycerides (DPTG), triglycerides
(TG), diglycerides (DG), monoglycerides (MG), and free
fatty acids (FFA) were measured by HPSEC (high-perfor-
mance size exclusion chromatography) according to the
IUPAC 2508 standard (9). The mobile phase consisted of
tetrahydrofuran. The HPSEC system included a pump set at a
flow rate of 1.00 mL/min, three analytical columns of 300 ×
7.5 mm packed with Pl-gel (500 Å + 100 Å + 100 Å), an au-
tosampler, and a refractive index detector. DPTG was defined
as all peaks, 2–3, eluted before the TG. The anisidine value
(AV) was determined by the spectroscopic method described
in the IUPAC 2504 standard with ultraviolet detection at 350
nm (9). The Oxifrit Test (OT) redox indicator distributed by
Merck (Darmstadt, Germany) was carried out according to
the accompanying instructions. The four standard categories:
good, still good, replace, and bad were given values from 1 to
4, and half intervals were used when the color reading was
ambiguous (Table 2). The peroxide value (PV) was deter-
mined with the titration procedure described in AOCS rec-
ommended practice Cd 8-53 (10). The iodine value (IV) was
determined as described in AOCS recommended practice Cd
1b-87 (10). Finally, the total vitamin E content (vita-E) of the
oil samples was determined according to the high-perfor-
mance liquid chromatography (HPLC) procedure described
by Podda et al. (11). Mobile (isocratic) phases were A:
ethanol, and B: 80% ethanol + 20% water. The HPLC system
included a pump set at a flow rate of 1.7 mL/min, a 250 × 4.6
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TABLE 1
The Spectroscopic Dataa

Fluorescence NIR/VIS FT-IR FT-Raman

Instrument Dispersive Dispersive FT FT
Sampling 

method 90° Emission Transmission HATR 180° Scattering
Reference None Quartz ZnSe/KBr None
X-variables 4386 1050 5901 3000
X-units nm nm cm−1 cm−1

X-minimum 400 400 600 300
X-maximum 800 2500 6500 3300
Resolution — — 8 4/64
Accumulations — 16 32 16
X-sampling 0.5 2 1 1
aNIR/VIS, near infrared/visible; FT-IR, Fourier transform infrared; HATR, hor-
izontal attenuated total reflectance.



mm, 5-µm particle diameter. Chromspher C18 stainless-steel
column (Chrompack Int., Raritan, NJ), an autosampler, and a
fluorescence detector. Detection was set at excitation 292 nm,
and emission at 325 nm. Six peaks were detected for α-to-
cotrienol, β-tocotrienol, γ-tocotrienol, α-tocopherol, β-to-
copherol, and γ-tocopherol, respectively. In the quantitation,
integration of the peaks was related to tocopherol standards.
Determination of tocotrienolic content was based on the re-
sponse functions developed for the corresponding tocopher-
ols. The vita-E content (Table 2) was determined as the sum
of all six substances.

Chemometrics. Chemometrics is the science of relating
measurements made on a chemical system or process to the
state of the system via application of mathematical or statisti-
cal methods (definition by the International Chemometrics
Society). One of the main advantages of chemometric meth-
ods is that they are able to deal with spectral information that
contains multivariate colinear data. Chemometrics allows us
to analyze the frying operation as a whole, initially with the
sacrifice of understanding on a more fundamental level but
with the capability of providing global information that later
feeds back into low-level knowledge.

Principal component analysis (PCA) is a powerful tech-
nique for compression of large multivariate data sets, such as
spectral information (12). The multidimensional data set is
resolved into orthogonal components whose linear combina-
tions approximate the original data set in a least squares
sense. In PCA, the original data matrix (X) is decomposed
into a score matrix (T) and a loading matrix (P), and the resid-
uals are collected in a matrix (E):

X = TPT + E [1]

Only a limited number of principal components (PC), equal
to the chemical rank of the X-matrix, are relevant in describ-
ing the systematic information in X. The loading vectors for
the PC can be considered as pure hidden spectra that are com-
mon to all measured spectra. What makes the individual raw
spectra different are the amounts (scores) of hidden spectra.

The scores contain information about samples and the load-
ings about the variables (13).

Partial least squares (PLS) regression is a predictive two-
block regression method based on estimated latent variables
and applies to the simultaneous analysis of two data sets (e.g.,
spectra and physical/chemical tests) on the same objects (e.g.,
frying oils) (14). The purpose of PLS regression is to build a
linear model that enables prediction of a desired characteris-
tic (y) from a measured spectrum (x). In matrix notation, we
have the linear model y = Xb where b contains the regression
coefficients that are determined during the calibration step.
PLS was first applied to NIR spectra by Martens and Jensen
in 1983 (15) and is now used routinely to correlate spectro-
scopic data (rapid measurements) with related chemical/phys-
ical data (slow chemical/physical measurements).

Principal variables is a method for selecting a limited num-
ber of original variables (wavelengths) that describe as much
as possible of the variance in the data matrix (spectra) or, al-
ternatively, in a vector with a desired characteristic (chemi-
cal/physical measurement) (16). Besides being important
when developing robust PLS models and when optimizing fil-
ter instruments, principal variables selection is also helpful in
interpretation of the models (13). The principal variable
method is initiated by finding the variable (wavelength) that
covaries most with the y-vector (physical/chemical measure-
ment). This variable is the first principal variable. The origi-
nal data matrix is then reduced (orthogonalized) with respect
to the first principal variable. Then new covariant variables in
the reduced data matrix are selected iteratively. The result of
the principal variable selection is a limited number of the
original variables (e.g., wavelengths), while PCA/PLS selects
latent factors based on information from all original variables
(vectors). If the objective is to build predictive models, it is
subsequently necessary to apply MLR (multiple linear regres-
sion) or PLS to the reduced matrix of principal variables. 

Calibration/validation. Owing to the limited material
available in this study (20 samples), it was appropriate to use
“leave one out” (full cross) validation (17) in all evaluations
reported in this study. Because of a relatively nonuniform dis-
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TABLE 2
The Chemical/Physical Reference Dataa

VISC DPTG TG DG MG FFA AV OT PV IV Vita-E

Rotational IUPAC 2504c
AOCS AOCS HPLCf

Standard viscosimeter IUPAC 2508 HPSECb
(350 nm) Merckd Cd 8-53e Cd 1b-87e (292 nm)

Relative error 1.2% 0.8% 4–6% 5%
Unit cps % % % % % — — meq/kg cg I/g µg/g
Minimum 63 0.77 62.20 5.16 0.22 0.44 12.60 1.0 0.40 33 413
Maximum 85 8.22 93.37 30.41 1.53 6.93 27.90 2.5 1.12 73 733
Average 73.45 5.92 73.88 15.51 0.90 4.29 18.64 1.6 0.88 53.55 506
SD 5.92 2.29 11.01 6.73 0.51 2.39 4.37 0.6 0.23 13.10 98
aVISC, viscosity; DPTG, dimeric and polymeric triglycerides; TG, triglycerides; DG, diglycerides; MG, monoglycerides; FFA, free fatty acids; AV, anisidine
value; OT, Oxifrit Test; PV, peroxide value; IV, iodine value; vita-E, vitamin E.
bHPSEC, high-performance size exclusion chromatography; IUPAC 2508 (Ref. 9).
cIUPAC 2504 (Ref. 9).
dDarmstadt, Germany.
eAOCS Cd 8-53 (Ref. 10); AOCS Cd 1b-87 (Ref. 10).
fHPLC, high-performance liquid chromatography.



tribution of the samples in most calibrations developed in this
study, it can be argued that the equilibrium region (last 2 wk)
with small sample variation should be diluted (down-scaled)
in the calibration procedures. However, this approach did not
lead to different conclusions.

Programs. All collected spectral data were converted to
ASCII format and imported to dedicated chemometric
programs. Chemometric calculations were performed with
Matlab ver. 4.2c1 (The MathWorks Inc., Natick, MA) in-
stalled with PLS Toolbox ver. 1.5 (Wise & Gallagher; Eigen-
vector Technologies, Manson, WA) and Unscrambler ver. 6.1
(CAMO ASA, Trondheim, Norway).

RESULTS AND DISCUSSION

Chemical/physical data. The results of the tests are shown in
Table 2 and are discussed and compared to national regula-
tions collected from the literature (5,18). The impact of fat
degradation on the viscosity is extremely complex and chiefly
understood on a schematic level: Polymerization will increase
viscosity, and decreased level of unsaturation leads to an in-
crease in viscosity. In this study, the viscosity continued to in-
crease through the first 11 samples, but thereafter the varia-
tion in viscosity became more randomized (Table 2). One
country, Belgium, has a law that designates a maximum value
(27 mPa-s at 50°C) for oil viscosity (5,18).

The presence of heat accelerates the formation of dimers
and cyclic compounds through polymerization. The com-
pounds that result from this process are large molecules
formed by carbon-to-carbon and/or carbon-to-oxygen-to-car-
bon bridges among several fatty acids (19). Marked increases
in such oligomer compounds contribute to increases in fat vis-
cosity, foaming, and color darkening (20). In this study, the
DPTG content (Table 2) continued to increase through the
first 10 to 12 samples. Thereafter, the DPTG content stabi-
lized at a level around 8%. In Belgium, the use of frying oils
with more than 10% DPTG is forbidden by law; in The
Netherlands, the corresponding limit is 16% (5,18).

Interestingly, no initiative has been taken to regulate the
use of frying oil on the basis of diminished content of TG, DG
or MG, but because the “popular” total polar content (TPC)
determination (21,22) is defined as the sum of materials that
are not TG, TG determination is, in principle, directly corre-
lated to the TPC determination via the 100% sum. However,
because the TG measurement in this study is based on sepa-
ration by molar weight, oxidized TG (approximately 1 to 3%)
are accounted for differently than by TPC measurement. The
TG content (Table 2) decreased continuously in the first 13
samples, but thereafter it stabilized at a level around 65%—a
value which is slightly lower than the generally accepted lim-
its for a degrading frying oil, viz., TG below 75% and TPC
above 25% (23–25).

Determination of FFA appears to be a favored method for
internal quality control evaluation of frying fats in the food
industry. FFA are formed by oxidation as well as by hydroly-
sis, and unfortunately the tests used for FFA determination

cannot distinguish between FFA formed by hydrolysis and
those formed by oxidation. Some previous studies have found
a high correlation between FFA or TPC and length of frying
time, suggesting that accurate prediction of oil abuse is possi-
ble (20). In this study, the FFA content (Table 2) increased
through the first 13 samples to reach a level of 6.9%. There-
after, the FFA level dropped slightly to a level just above 6%.
In Belgium, the law forbids oils with FFA content above 2.5%
(5,18).

Hydroperoxides from primary oxidation react to form sec-
ondary products whose aldehydic compounds are measured
by the AV test. The AV test has an enhanced sensitivity to un-
saturated aldehydes but does not measure the ketonic sec-
ondary products of oxidation (26). In this study, the AV level
increased rapidly from 12.6 to 27.6 in the first three samples
(Table 2), but thereafter it decreased slowly to stabilize after
samples 9–12 at a level around 16. To our knowledge, AV has
not been used for regulatory purposes.

The OT from Merck, which is sensitive to oxidized mate-
rials, is now used as a quick initial test for frying oil deterio-
ration by food control officials in several countries, including
Australia, Luxembourg, Portugal, and Sweden (5,18). In this
study, the OT level remains at value 1 (good) in the first 9
samples, it changed to value 2 (still good) at sample 13, in-
creased to value 2.5 (still good/replace) in sample 17, and re-
mained at this level in the rest of the samples. 

PV is the classical method for determination of peroxy
groups present in oxidized fats and oils. Hydroperoxides are
products of the primary oxidation in a frying oil. The PV
method is based on the liberation of iodine by the hydroperox-
ides in an acid medium. Unfortunately, PV methods are highly
empirical, and there will be variation between laboratories due
to the interference of oxygen, reaction time, temperature, etc.
Peroxides tend to decompose during heating and frying at
180°C (27). PV of the frying oils in this study ranged between
0.4 and 1.12 meq/kg with no significant trend (Table 2). In
Australia, frying fats must have a PV less than 2 meq/kg (18).

IV is a measure of the total number of double bonds in the
frying oil and thus monitors the loss of unsaturation. IV val-
ues of the frying oils in this study display a decreasing trend
for the first 15 samples (from approximately 73 to approxi-
mately 38); thereafter the level stabilizes. In Finland, guide-
lines recommend that the frying oil must be changed if the IV
has decreased by more than 16 (18).

Loss of antioxidants, such as vitamin E, from heated oils
may be attributed to volatilization of the antioxidant through
evaporation, decomposition, and scavenging reactions of the
antioxidants (26). The natural content of antioxidant vitamin
E protects to some extent the fats from oxidation by combin-
ing with radicals and stopping the chain reaction by which the
free radicals multiply. In this process, vitamin E is oxidized
especially by hydroperoxides, which are oxidation products
of unsaturated fatty acids. In this study, the vita-E content de-
creased from approximately 733 µg/g to a level of approxi-
mately 430 µg/g through the first 12 samples. Several coun-
tries, including France, Norway and Switzerland, have spe-
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cific laws that prohibit the use of synthetic antioxidants and
silicone in frying oils (18).

To investigate the internal variance structure in the chemi-
cal/physical data, a PCA was performed on the autoscaled
Y-data. Figure 1 shows score and loading plots of the Y-data
as a function of the two first PC. In this case, the first two PC
describe 91% (86% + 5%) of the total variance in the Y-ma-
trix. The fact that the three first PC describe 96% (86% + 5%
+ 5%) of the variance implies a high degree of redundant in-
formation in the different chemical/physical tests. The load-
ing plot in Figure 1B shows that practically all chem-
ical/physical tests, except AV and vita-E, are well described
by the first PC. Furthermore, it shows that IV and TG are neg-

atively correlated (decrease) to the time of use (DAYS),
whereas DPTG, VISC, DG, MG, FFA, and OT are positively
correlated (increase) to DAYS. Finally, vita-E was negatively
correlated to AV in the second component, i.e., when the
number of secondary oxidation products increased, the con-
tent of antioxidants decreased. When the score plot, Fig-
ure 1A, was compared with the loading plot (superimposed),
it showed that unused but heated sample 1 had the highest
content of vita-E and lowest AV and that samples 3 and 4 had
maximum AV values.

To further investigate intercorrelations among the chemi-
cal/physical data, principal variable analysis of the Y-matrix
was performed to find the most important variables. The two
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FIG. 1. (A) Score plot from principal component analysis (PCA) on chemical data measured on
the frying oil samples. (B) Loading plot (X-loadings) from PCA on chemical data measured on
the oil samples. AV, anisidine value; TG, triglycerides; IV, iodine value; Vita-E, vitamin E; OT,
Oxifrit Test; MG, monoglycerides; FFA, free fatty acids; VISC, viscosity; DPTG, dimeric and
polymeric triglycerides; DG, diglycerides; DAYS, time of use.
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most important principal variables were TG and AV, as also
indicated by the PCA score plot in Figure 1A. The two vari-
ables together describe 91% (86% + 5%) of the total variance
in the chemical/physical tests. This variation corresponds ex-
actly (within rounding errors) to the explained variation in the
two PC of the entire set of chemical/physical data (see above).
While the first PC explains variation from the ester/free acid
ratio, the second PC explains variation from secondary oxi-
dation products. To investigate the dependency of the TG and
AV variables upon the other variables, full cross-validated
MLR models, using the two selected variables, TG and AV,
for prediction of the other variables, were calculated. Strong
positive correlations (0.75 < R2 ≤ 1.00) were found to DAYS,
VISC, DPTG, DG, MG, FFA and IV, revealing that measure-
ment of AV, combined with measurement of TG content, ren-
ders the other chemical/physical tests practically superfluous.
Only OT (R2 = 0.55) and vita-E (R2 = 0.65) measurements
were poorly correlated. Similar MLR models were calculated
with DAYS as the only variable, and strong correlations (0.75
< R2 ≤ 1.00) were found to VISC, DPTG, TG, DG, MG, FFA,
OT, and vita-E. Considering the high-correlation coefficient
between DAYS and TG, it can be argued that simply count-
ing the number of days in use, along with the measurement of
AV, would be sufficient for industrial purposes. However, it
has to be stressed that such correlation results are likely to de-
pend on the frying object and the chemical composition of the
frying oil. Nevertheless, the results support previous studies
that show a high correlation between FFA or TPC and length
of frying time (20,28).

Finally, it was attempted to build a PLS model of time in
use (DAYS) from the autoscaled chemical/physical data (the
Y-matrix). The resulting one-component PLS model has a
correlation coefficient R2 = 0.95 and a root mean square error
of cross-validation prediction (RMSECV) = 1.80 days. This
result will be used as a reference value when comparing the
spectral PLS models below.

Fluorescence spectroscopy. Fluorimetry is a sensitive
spectroscopic method, provided that the substance to be ana-
lyzed contains one or more fluorophores. Fluorescence has
previously been applied to oil analysis, including quantitation
of lipid hydroperoxides with dichlorofluorescein (29), analy-
sis of high-molecular-weight oxidation products such as the
fluorescent pigment, also called the lipofuscin or age pig-
ments (30), and analysis of vitamin E (α-tocopherol) (31). In
the present investigation, focus was on the quantitative as-
pects of fluorescence spectroscopy with regard to general de-
terioration of the frying oil.

To determine the most appropriate excitation wavelengths,
a complete fluorescence landscape of each of the terminal
samples (1 and 20) was recorded (Fig. 2). Interestingly, the
two maps show that the initial two-component system with
emission maxima at approximately 475 and 660 nm degener-
ates to a one-component system with an emission maximum
at approximately 585 nm. Owing to the extremely compli-
cated oil matrix, no attempt to assign the fluorophores will be
made here. From the information in the two maps, the follow-

ing five excitation wavelengths were selected for the fluores-
cence investigation of the 20 oil samples: 395, 420, 440, 500,
and 530 nm. The resulting fivefold appended emission spec-
tra, shown in Figure 3A, reveal a large shift in fluorescence
intensity during the first 2 wk (the first 10 to 11 samples) as
the frying oil becomes more used. The PCA score plot in Fig-
ure 3B has a characteristic horseshoe shape, which displays a
clear development during the first 2 wk after which the spec-
tral variation of the oil samples becomes stable with random-
ized variations. Apparently, an equilibrium between ongoing
oxidation processes and the high turnover rate has occurred
after sample 12. This is interesting because sample 11 corre-
sponds to the Monday sample taken after weekend storage
and indicates that storage of the used frying oil does not
strongly affect the oxidation process. With more frequent
sampling, such a PCA score plot would be a highly useful vi-
sual projection tool to monitor an industrial deep-fat frying
operation (32). If the objective is to maintain an equilibrium
in which oil deterioration is minimized and the operation can
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FIG. 2. Fluorescence excitation–emission landscapes. (A) Fluorescence
contour mapping of sample 1. (B) Fluorescence contour mapping of
sample 20. Horizontal lines indicate selected excitation wavelengths.



continue indefinitely, the PCA score plot can be used to visu-
alize any deviations from normal processing conditions and
help to tune the process back in by developing appropriate re-
sponse functions to process variables, such as frying temper-
ature, filtering, antioxidant addition, and turnover rate. Ide-
ally, this approach could be extended by relating the score
plot to sensory and toxicological tests. The possible benefits
could be stretching the frying life of the oil, obtaining more
uniform and high quality of the frying objects and extending
the shelf life of the fried objects.

From the fluorescence spectra, an attempt was made to
construct quantitative PLS models to the reference chemi-
cal/physical tests. The results, listed in Table 3, show that the
fluorescence spectra provide the best global correlations to
DPTG, AV, IV, and vita-E determinations. In all of these but
AV, the models use more than one PC, indicating the presence
of important minor spectral components. Good correlations

(R2 = 0.97) were also found with TG, DG, MG, and FFA de-
terminations in which the relevant compounds contain no flu-
orophores. Apparently, these indirect correlations arise from
the fact that the ratio of oxidation and hydrolysis is constant
throughout the operation. Time evolution, DAYS, can be
modeled within ±1.43 d, and thus fluorescence is a more ac-
curate predictor than the chemical/physical reference data.
The existence of such a good model indicates that fluores-
cence spectroscopy has good potential for monitoring the
overall chemical changes in the frying oil. It was not possible
to build linear PLS models for the VISC and PV measure-
ments. Because the level of PV values in the 20 samples was
small (see Table 2) and the determination inaccurate, the lack
of a model is not surprising. The model for AV was initially
not good, but it improved significantly when the first unused
sample, 1, was left out of consideration. Finally, all PLS mod-
els had better convergence behavior and slightly better per-
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FIG. 3. (A) Appended fluorescence emission spectra of the 20 oil samples. From left to right:
excitation from 530 nm, 500 nm, 440 nm, 420 nm, and 395 nm. (B) Score plot from PCA on
fluorescence data as a function of the two first PC, describing 87 and 12% of the spectral vari-
ation, respectively. See Figure 1 for abbreviation.
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formance when the raw intensity data were pretransformed
by a logarithmic function. First- and second-derivative spec-
tra did not improve the performance of the raw spectra.

Principal variable analysis showed that the spectral mod-
els were mainly influenced by excitation/emission wave-
lengths of 500/590 (emission maximum in the used frying
oil), 440/540, and 395/475 nm (emission maximum in the un-
used frying oil). The second peak with emission maximum
around 660 nm in the unused frying oil spectrum (Fig. 2),
which disappeared from the oil during the first 6 to 7 d, did
not influence any of the models. So, we believe that this fluo-
rophore originates from remaining plant pigments, such as
chlorophyll.

NIR/VIS spectroscopy. In the last couple of decades, with
the advent of modern multivariate chemometric algorithms,
NIR spectroscopy has become a powerful analytical tech-
nique. The vibrational overtone and combination bands resid-
ing in this spectral region contain an abundance of chemical
information, comparable to the mid-infrared region, with the
additional advantage that instrumentation is simpler and
cheaper. As early as 1956, Holman and Edmondson (33)
showed that absorption bands at 1690, 2150, and 2190 nm
could be assigned to C–H bonds bound to cis-unsaturated fatty
acids. More recently, Sato et al. (34) conducted an NIR study
of spectral patterns in the NIR region of fatty acids and oils.

The NIR/VIS spectra of the 20 samples are shown in Fig-
ure 4A, and the corresponding PCA score plot in Figure 4B.
The PCA score plot has a parabolic shape and, similarly to
the score plot based on the fluoroscence data, the spectral
variance among the first 11 samples displays a clear develop-
ment. However, a large gap exists with the remaining nine
samples, which again cluster in a randomly distributed equi-
librium region. Whereas the fluorescence score plot shows
decreasing spectral variation among the first 11 sample spec-
tra, the NIR/VIS score plot displays the opposite tendency.
This observation suggests that the variation in the two spec-
tral ensembles is influenced by different compounds.

Table 3 lists the performance of the quantitative PLS mod-
els constructed on the basis of the NIR/VIS spectral ensem-
ble. Owing to the extremely high reproducibility of this in-
strumental technique, pretransformations (scatter corrections
or derivatives) of the spectra had no positive effect on the
model performances. The table shows that NIR/VIS spectra
provide the globally best models to VISC and MG, and that
accurate NIR/VIS correlations were found for the DPTG, TG,
DG, MG, and FFA measurements. As with fluorescence data,
no models could be constructed for the PV measurements.
The model of time evolution, DAYS, is relatively poor, pre-
sumably indicating lack of spectral information from sec-
ondary oxidation products. Because the visible spectral
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TABLE 3
PLS Correlations Between the Four Spectral Ensembles and Frying-Oil Quality Parameters

DAYS VISC DPTG TG DG MG FFA AV OT PV IV Vita-E

Fluorescence
Transforma log log log log log log log n.t. log log log n.t.
Outliersb — — — — 17 — — 1 — — — —
PC (number)c 3 3 3 1 1 2 1 1 3 1 3 3
RMSECVd 1.43 2.18 0.33 1.76 0.93 0.09 0.43 1.25 0.17 0.19 3.33 22.92
R2,e 0.94 0.86 0.98 0.97 0.97 0.97 0.97 0.91 0.92 0.24 0.93 0.94

NIR/VIS
Transform n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t.
Outliers — — — — 17 — — 1 — — — —
PC (number) 1 3 3 2 2 1 2 1 3 1 1 3
RMSECV 1.98 1.83 0.40 1.33 0.58 0.06 0.25 1.51 0.19 0.20 4.25 23.40
R2 0.88 0.90 0.97 0.98 0.99 0.99 0.99 0.87 0.90 0.21 0.89 0.94

FT-IR
Transform n.t. n.t. n.t. d/dσ n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t.
Outliers — — — — 17 — — 1 — — — —
PC (number) 1 1 3 1 1 3 1 1 1 1 1 3
RMSECV 2.25 2.48 0.43 0.45 0.37 0.06 0.17 1.81 0.32 0.20 4.77 28.31
R2 0.85 0.82 0.96 1.00 1.00 0.99 0.99 0.81 0.72 0.24 0.86 0.91

Raman
Transform d/dσ log log log log log log log log d/dσ log log
Outliers — — — — 17 — — 1 — — — —
PC (number) 2 1 4 3 3 3 3 1 3 1 1 3
RMSECV 1.10 2.63 0.70 3.00 1.62 0.16 0.61 2.10 0.15 0.21 4.49 45.41
R2 0.96 0.79 0.91 0.92 0.92 0.90 0.93 0.74 0.94 0.12 0.87 0.78

aTransformation of spectroscopic data prior to partial least squares (PLS) regression; n.t., no transformation.
bSample outliers; — = no outliers. Spectra which are withdrawn from the PLS regression owing to abnormal spectrum and/or reference value.
cThe number of principal components (PC) providing the optimal PLS fit. Owing to the limited number of samples, all models were restricted to using few PC
with significant improvements in PLS performance.
dRMSECV = root mean square error of cross-validation.
eThe fully cross-validated correlation coefficient R2. When multiplied by 100, it provides the percentage of explained y-variance. See Tables 1 and 2 for
other abbreviations.



region was included in the NIR/VIS measurements, we can
probably also conclude that color measurements are not a
good indicator of time evolution in the frying oil bath. A prin-
ciple variable analysis of the best models showed that the two
most influential spectral elements were 2414 and 498 nm in
practically all models. The two wavelengths correspond to
background scatter and a blue/green color; therefore, the
models are mainly influenced by indirect correlations to the
amount of dispersed material and concentration of color pig-
ments.

FT-IR spectroscopy. The oxidation of fats and oils has
been thoroughly characterized by van de Voort et al. (35–38)
with ATR FT-IR, and precise quantitative correlations have
been found for alcohol percentage, total carbonyl content, PV,
FFA, IV, and saponification number (SN). In this study, how-
ever, we investigated the performance of FT-IR for monitor-
ing the changes in the oil in a real-world frying operation
rather than with a constructed sample set designed with large
variations.

The superimposed FT-IR spectra of the 20 frying oil sam-

ples, shown in Figure 5A, display typical aliphatic lipid be-
havior. Three main peaks found in the low wavenumber re-
gion at 722, 1160, and 1460 cm−1 are due to polymethylene
rocking deformation, C–O asymmetric ester stretching, and
methylene scissoring vibrations, respectively. In the carbonyl
region, we found a strong peak at 1745 cm−1, corresponding
to the ester C=O stretch. A closer look at this band, Figure 6,
reveals a progressively increasing shoulder at about 1713 
cm−1 corresponding to the carbonyl stretching of FFA, formed
by thermal breakdown of TG into DG and MG and FFA. In
the aliphatic CH stretching region, the two main peaks at
2854 and 2923 cm−1 correspond to symmetric and asymmet-
ric CH stretching of the methylene groups. Finally, a weak
peak at 3007 cm−1 corresponds to olefinic =C–H stretchings
in cis configurations. Scrutiny of the spectra (at 966 and 1672
cm−1) also reveals the presence of trans olefins, but they ap-
pear not to increase during the frying process. The PCA score
plot in Figure 5B, based on spectral information in the FT-IR
spectra, revealed that the information from the second PC was
less structured than in the other spectroscopic ensembles. The
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FIG. 4. (A) Near infrared/visible (NIR/VIS) spectra of the 20 oil samples. (B) Score plot from
PCA on NIR/VIS data as a function of the two first PC, describing 99 and 1% of the spectral
variation, respectively. See Figure 1 for other abbreviation.

lo
g 

(1
/R

)



second PC described only about 1% of the spectral variances
because almost all spectral variance was included in the first
PC, i.e., 98%. When considering only the variation along the
first PC, we obtained a systematic spectral variance until sam-
ple 11, from which point there is a small jump to the remain-
ing samples with unsystematic sample variation. 

The performance of PLS models to the chemical/physical
data from the FT-IR spectral ensemble is summarized in
Table 3. The models make use of the full-spectral informa-
tion in the region from 3200 to 600 cm−1, except for the re-
gion from 2600 to 1900 cm−1 where absorption is lacking.
The table shows readily that the PLS models for TG, DG, and
FFA are extraordinarily simple and accurate. These models
correspond closely to the fact that, in the gross details, FT-IR
spectra of the frying oil are essentially those of fatty acid es-
ters and those of FFA. The best TG model was made from the
first-derivative spectra; this pretransformation changed only
the RMSECV value while the correlation coefficient of 1.0
remained unchanged. The models for DPTG and MG are also
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FIG. 5. (A) Fourier transform infrared (FT-IR) spectra of the 20 oil samples. (B) Score plot from
PCA on FT-IR data as a function of the two first PC, describing 98 and 1% of the spectral varia-
tion, respectively. See Figure 1 for other abbreviation.

FIG. 6. The carbonyl region of the FT-IR spectra. Inserted is a graph of
the linear relationship between the absorbance at 1713 cm−1 and the
free fatty acid (FFA) determination. See Figure 5 for other abbreviation.



good, presumably due to their high degree of correlation to
TG and FFA. Finally, it was possible to construct a PLS
model for vita-E. No good linear models could be built for
DAYS, VISC, AV, OT, PV, and IV. The model for DAYS from
the FT-IR data was the least satisfactory in this study, which
is interesting because FT-IR is most accurate for monitoring
the gross changes in the frying oil as reflected in thermal de-
composition of the TG. This indicates that the apparent equi-
librium that occurs after sample 11 is an equilibrium in the
ratio between fatty acid esters and FFA, caused by the replen-
ishment with new oil. If other chemical components still con-
tinue to build up, such as soluble substances from the frying
objects or plant pigments from the oil, they are trace sub-
stances that are not detectable by FT-IR.

As shown in the inserted graph in Figure 6, the relation-
ship between the 1713 cm−1 band and the FFA determination
is strikingly linear. A classical univariate linear regression
model results in an RMSECV of 0.12 and a correlation coef-
ficient, R2, of 0.996—slightly better than the multivariate PLS
model. In light of such an exceptionally good relationship,
one may question the relevance of applying multivariate al-
gorithms. However, for most practical purposes, multivariate
PLS models will behave more robustly and facilitate outlier
detection.

In the FT-IR region, principal variable selection is impor-
tant because we can usually interpret the spectral elements on
a group frequency basis. Table 4 lists the result of principal
variable selection based on the FT-IR ensemble in the form
of the three most influential spectral elements and the corre-
sponding best MLR models. As apparent from the table, all
models use the carboxylic carbonyl stretch from FFA as their
main principal variable. The strongly absorbing fatty acid
ester carbonyl stretch at 1745 cm−1 is in fact only used in the
TG model (and in the weaker IV and vita-E models). The
MLR results (Table 4) showed that the MLR models based on
few optimal variables are as good as the full spectral PLS
models listed in Table 3. When considering the principal vari-

ables, a new spectral element appears at approximately 1732
cm−1 in between the two main carbonyl stretches. This band
covaries almost perfectly with the acid stretch at 1713 cm−1,
which can perhaps be assigned to a fraction of the FFA that is
unassociated (not dimerized). The two-component principal
variable/MLR model for FFA has improved RMSECV
slightly when compared to the univariate model described
above.

NIR FT-Raman spectroscopy. The development of FT in-
terferometers (39) and NIR lasers for use in Raman spec-
troscopy has suddenly made Raman spectroscopy an interest-
ing and promising technique for use in the agricultural and
food sciences. NIR FT-Raman has proved useful in determin-
ing total level of unsaturation, cis/trans isomer ratios, and the
total number of double bonds in hydrocarbon chains (40,41).

The Raman-shifted spectra of the 20 oil samples are shown
in Figure 7A. The spectra display almost the same details, ex-
cept for an increasing scatter toward low wavenumbers as a
function of increasing frying time. In the mid-wavenumber
region, we find two peaks at 1302 and 1440 cm−1, corre-
sponding to polymethylene twisting and scissoring, respec-
tively. Carbon-carbon double-bond stretching is found as a
sharp and relatively strong peak at 1656 cm−1, characteristic
of cis olefins. In the carbonyl region, we find only a broad and
weak peak, centered around 1748 cm−1, corresponding to the
ester C=O stretch. In the aliphatic CH stretching region, the
two main peaks at 2852 and 2925 cm−1 correspond to poly-
methylene symmetric and asymmetric CH stretchings, re-
spectively. The peak at 3009 cm−1 is due to olefinic =C–H
strechings in cis configurations.

The PCA score plot in Figure 7B displays a more distorted
sample trend than for the fluorescence and NIR/VIS spectral
ensembles, probably due to the inherent lower signal-to-noise
ratio of the Raman scatter. What is perhaps more interesting
is that the gap between samples 11 and 12 is absent and that
there is considerably more systematic variation in the sam-
ples from the last 2 wk. 

The performance of the full-spectral PLS models, based
on the Raman spectra (Raman shift 300 to 3300 cm−1), is
listed in Table 3. To our surprise, the PLS model for frying
time (DAYS) was superior to the other spectral ensembles.
Analysis showed that the exceptionally good PLS model was
due to increasing Raman scatter at low wavenumbers in the
samples (see covarygram in Fig. 8). Raman scatter originates
from either fluorescence phenomena and/or from increasing
amounts of suspended materials in the frying oils. However,
the scatter more likely originates from fluorescence phenom-
ena because the particle scatter present in the IR region was
highly correlated to DPTG, but not to DAYS, and because the
Rayleigh scatter was less, and negatively, correlated to
DAYS. The predicted vs. measured plot of the PLS model to
DAYS in Figure 9B indicates that the reason for the good cor-
relation is a tendency to group the samples into scatter groups,
including the relatively large spread in the samples from the
last 2 wk. For comparison, the corresponding plot based on
the NIR/VIS spectra (Fig. 9A) displays more typical spectral
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TABLE 4
The Three Most Influencial Wavenumbers in the FT-IR 
Models as Determined by the Principal Variable Method 
and the Corresponding Best Cross-Validated MLR Modelsa

Principal variable MLR

Model σ1 σ2 σ3 Prin. var. RMSECV R2

DAYS 1713 2919 1750 3 2.15 0.86
VISC 1713 1559 2914 1 2.45 0.82
DPTG 1714 1731 1745 2 0.47 0.96
TG 1713 1745 1734 3 0.51 1.00
DG 1713 1559 2915 2 0.31 1.00
MG 1713 1733 1745 2 0.04 0.99
FFA 1713 1736 1745 2 0.10 1.00
OT 1713 1732 2918 3 0.27 0.80
IV 1713 1729 1744 3 4.78 0.86
Vita-E 1714 1732 1745 3 30.58 0.90
aWavenumbers are in reciprocal centimeters. The sequence σ1, σ2, σ3 indi-
cates decreasing influence. MLR, multiple linear regression; Prin. var., prin-
cipal variable. See Tables 1 and 2 for other abbreviations.



behavior with a clear nonlinear tendency, and the samples
from the last 2 wk clustered in a swarm, resulting in poor cor-
relation.

The remaining Raman PLS models were inferior to the
other spectral ensembles except for the OT model, which is
apparently also correlated to the Raman scatter. Ozaki et al.
(41) found a linear correlation between IV and the intensity
ratio I1658/I1443. By performing a logarithmic pretransforma-
tion prior to the regression analysis, to make the relative
intensities additive, we found a one-PC model for IV
(RMSECV = 4.5) that was slightly better than models based
on the raw and derivative spectra but still inferior to the PLS
models based on the NIR/VIS and fluorescence spectra. Fi-
nally, all PLS models based on Raman spectra were slightly
better when recorded at low resolution (64 cm−1) than when
recorded at high resolution (4 cm−1).

The present investigation has demonstrated the possibili-
ties of using different spectroscopic sensors, along with mul-
tivariate chemometric methods, for monitoring the physico-
chemical changes that occur in oil during an industrial frying
operation. It appears that FT-IR with the ATR sampling tech-
nique was a most direct and accurate method of monitoring
the gross changes in the frying oil, as reflected by the thermal
decomposition of TG into FFA. NIR/VIS and fluorescence
spectroscopy perform almost equally well via indirect corre-
lations from chromophores and fluorophores, respectively.
The investigation has demonstrated that it is possible, with-
out significant loss of accuracy, to replace titration and chro-
matographic procedures with fast noninvasive spectroscopic
methods. Finally, spectroscopy in combination with multi-
variate projection tools has great potential to be used on-line
to monitor and optimize the unit operation of deep frying.
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FIG. 7. (A) Near-infrared (NIR) FT-Raman spectra (at 64 cm−1 resolution) of the 20 oil samples.
(B) Score plot from PCA on NIR FT-Raman data as a function of the two first PC, describing 96
and 4% of the spectral variation, respectively. See Figures 1 and 5 for other abbreviations.
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